Community Data Profiles

Overview

The Community Data Profiles are located at https://webapp01.dhss.mo.gov/MOPHIMS/ProfileHome. Each Community Data Profile table provides data on 15-30 indicators for the geography (state, county, city, or region) selected. Information provided includes data year(s), number of events, geography rate, state rate, statistical significance (compared to the state), quintile ranking, links to additional graphing functions, and multiple downloading options. Profiles can be viewed for the state as a whole, each of Missouri's 115 counties (including St. Louis City), Eastern Jackson County (which excludes Kansas City and Independence), and the cities of Independence, Joplin, and Kansas City. Data by BRFSS (Behavioral Risk Factor Surveillance System), LPHA (Local Public Health Agency), and RPC (Regional Planning Commission) regions are also available.

Due to limitations and challenges associated with survey-based data, some Profiles (notably County Level Study and County Level Study Comparison, Diabetes, Heart Disease, and Stroke Profiles) may have fewer geographic choices available.

\% Senior Senices	Amoprims нome	Profles - micar ephr	2 sionup

Community Data Profiles

Community Data Profiles are available on various subject areas such as cause of death, chronic diseases, unintentional injuries, prenatal and others. Each Community Data Profile able provides data on $15-30$ indicators for each geography selected. Information provided includes the number of events, rate for the selected geography, statistical significance compared to the state, quintile ranking (for counties) and the state rate.

Some Profiles contain data from a single data system. For example, the Leading Causes of Death Profile only contains data from the death certificate system. Other Profiles combine data from multiple data systems. For instance, the Minority Health Profile provides data from Vital Records, Hospital/ER Visits, and STDs. The following table shows the data sources included in each Profile.

Profile	Vital Records Births	Survey Data	Communit Vital Records Deaths	Data Prof Hospital/ ER	les - Topic Population Estimates	erview STDs	WIC	Other	NonDHSS Website
County Level Study Comparison		\checkmark						No Health Coverage	
County Level Study		\checkmark						No Health Coverage	
Alcohol and Drug Abuse Problems		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		Traffic Crashes Impaired Driver, School Attendance, Employment, Vocational Rehabilitation, Juvenile Court Referrals, Police Reports, Criminal Justice, Substance Abuse Programs, Primary Drug Problems	\checkmark
Assault Injury			\checkmark	\checkmark					
Child Health			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	Lead Testing, Divorces Involving Children, Probable Cause Child Abuse/Neglect	
Chronic Disease Comparisons			\checkmark	\checkmark					
Leading Causes of Death			\checkmark			\checkmark			
Delivery	\checkmark		\checkmark	\checkmark				Delivery Types, Abortions	
Diabetes	\checkmark	\checkmark	\checkmark	\checkmark				Hospital Utilization	
Emergency Room				\checkmark					
Heart Disease		\checkmark	\checkmark	\checkmark				Hospital Utilization	

Profile	Vital Records Births	Survey Data	Vital Records Deaths	Hospital/ ER	Population Estimates	STDs	WIC	Other	Non- DHSS Website
Hospital Revenue				\checkmark				Balance Sheet, Operating Margin, Markup, Hospital Utilization	
Inpatient Hospitalization				$\sqrt{ }$					
Infant Health	\checkmark		\checkmark	\checkmark			\checkmark	Infants on Medicaid	
Minority Health	\checkmark		\checkmark	\checkmark		\checkmark			
Prenatal	\checkmark						\sqrt{V}	Prenatal Medicaid, Food Stamps	
Social and Economic Indicators		\checkmark	$\sqrt{ }$		$\sqrt{ }$			Housing, Household Types, Language Spoken at Home, Citizenship Status, Disability, Poverty, Employment, Income, Agriculture/Farming, Work/Commuting Patterns, Education, School Enrollment	\checkmark
Self-Inflicted Injury			\checkmark	\checkmark					
Stroke		\checkmark	\checkmark	\checkmark				Hospital Utilization	
Unintentional Injury			\checkmark	\checkmark					
Women's Health			\checkmark	\checkmark					
Women's Reproductive Health	\checkmark					\checkmark		Fertility Rates, Abortions, Teen Pregnancies and Births	

Child Health Profile

The Child Health Profile contains a variety of indicators related to the health of individuals ages 1-19 years. A portion of the Child Health Profile for Missouri follows.

Documentation

Throughout the Profiles，many labels are linked to additional information about the data． Simply click on any hyperlinked label to view a definition and／or source information． For example，the following description is linked to Selected Indicators Ages 1－14：Injury Hospitalizations．

Injury Hospitalizations

Resident emergency room visits or hospitalizations with a primary diagnosis of fractures， wounds，dislocations，poisonings，or injuries due to external causes，as well as medical， drug or other complications of care．Rate is per 100，000 ED visits or hospitalizations in a given age group．

Clinical Classifications Software（CCS）Categories：225－244．
International Classification of Diseases（ICD－9）codes：716．10－716．19，717．0－718．09， 718．30－718．39，796．0，799．0，800．00－994．9，995．1－995．2，995．4－995．59，995．80－999．9， V15．5，V15．6，V54．0，V64，V67．4，or V71．3－V71．6．

Additional information can also be found in the footnotes．The footnotes to the Child Health Profile contain the following explanation of Injury Hospitalization rates：

Injury ER Visits／Hospitalizations rates are per year per 100，000 specified age population．

Downloads

The Download Data column allows users to download the data for each geography available for the indicator chosen to Excel or as a PDF．

Missouri Resident Child Health Profile					Print Profile
\checkmark Choose Your Profile Data					
State：Missouri					
AChild Health					
	Data Years	Count	Rate	Graphics Link	Download Data
Population Estimates					
Ages 1－4	2017	301，462	4.93	Graphics	圂合
Ages 5－14	2017	771，771	12.62	Graphics	図合
Ages 15－17	2017	236，721	3.87	Graphics	图
Ages 18－19	2017	156，535	2.56	Graphics	图 A

Additional data not shown on the webpage，like confidence intervals，are available in these downloads，as shown on the next page．

4	A	B	C	D	E	F	G	H
1	Missouri Resident Child Health Profile							
2	Indicator: Population Estimates - Ages 1-4							
3	Geography	Geography Type	Data Years	Count	Rate	Lower 95\% Confidence Limit	Upper 95\% Confidence Limit	Significantly Different
4	Missouri	Statewide	2016	299,294	4.91	4.89	4.93	
5	Central	BRFSS Region	2016	34,594	4.79	4.74	4.84	L
6	Kansas City Metro	BRFSS Region	2016	64,538	5.23	5.19	5.27	H
7	Northeast	BRFSS Region	2016	11,933	4.76	4.67	4.85	L
8	Northwest	BRFSS Region	2016	11,388	4.75	4.66	4.84	L
9	Southeast	BRFSS Region	2016	27,604	4.82	4.76	4.88	L
10	Southwest	BRFSS Region	2016	45,429	4.87	4.83	4.91	N/S
11	St. Louis Metro	BRFSS Region	2016	103,808	4.85	4.82	4.88	L
12	A	LPHA Region	2016	71,590	5.22	5.18	5.26	H
13	B	LPHA Region	2016	8,383	4.65	4.55	4.75	L
14	C	LPHA Region	2016	109,432	4.83	4.8	4.86	L
15	D	LPHA Region	2016	43,790	4.91	4.86	4.96	N/S
16	E	LPHA Region	2016	16,309	4.93	4.85	5.01	N/S
17	F	LPHA Region	2016	23,272	4.67	4.61	4.73	L
18	G	LPHA Region	2016	6,531	4.72	4.61	4.83	L
19	H	LPHA Region	2016	11,016	4.68	4.59	4.77	L
20	1	LPHA Region	2016	8,971	4.95	4.85	5.05	N/S
21	Boonslick	RPC Region	2016	5,236	5.2	5.06	5.34	H
22	Bootheel	RPC Region	2016	7,682	5.2	5.08	5.32	H
23	East-West Gateway	RPC Region	2016	97,922	4.83	4.8	4.86	L
24	Green Hills	RPC Region	2016	4,680	4.95	4.81	5.09	N/S
25	Harry S Truman	RPC Region	2016	11,284	5.31	5.21	5.41	H
26	Kaysinger Basin	RPC Region	2016	4,912	4.46	4.34	4.58	L
27	Lake of the Ozarks	RPC Region	2016	5,869	4.68	4.56	4.8	L
28	Mark Twain	RPC Region	2016	6,537	4.72	4.61	4.83	L
29	Meramec	RPC Region	2016	9,462	4.75	4.65	4.85	L
30	Mid-America	RPC Region	2016	60,901	5.27	5.23	5.31	H
31	Mid-Missouri	RPC Region	2016	16,221	4.74	4.67	4.81	L
32	Mo-Kan	RPC Region	2016	6,638	4.76	4.65	4.87	L
33	Northeast Missouri	RPC Region	2016	2,485	4.48	4.3	4.66	L
34	Northwest Missouri	RPC Region	2016	1,671	4.07	3.87	4.27	L
35	Ozark Foothills	RPC Region	2016	3,983	4.84	4.69	4.99	N/S
36	Pioneer Trails	RPC Region	2016	7,817	5.15	5.04	5.26	H
37	South Central Ozark	RPC Region	2016	6,013	4.78	4.66	4.9	N/S
38	Southeast Missouri	RPC Region	2016	9,926	4.57	4.48	4.66	L
39	Southwest Missouri	RPC Region	2016	30,055	4.8	4.75	4.85	L
40	Eastern Jackson County	City	2016	14,292	5.42	5.33	5.51	H
41	Independence	City	2016	6,486	5.54	5.41	5.67	H
42	Joplin	City	2016	2,716	5.2	5	5.4	H
43	Kansas City	City	2016	27,170	5.64	5.57	5.71	H
44	Adair	County	2016	943	3.72	3.48	3.96	L

Additional Download options at the bottom of the Profile allow the entire Profile to be loaded into an Excel spreadsheet.

```
ADownloads
Download Profile
```

To print the Profile, select the Print Profile link in the upper right corner of the screen.

County，city，and regional level Profiles will differ in appearance from the state level Profiles with additional columns and features．To access these tables，simply select your geography type （i．e．county）and place name（i．e．New Madrid County）and click submit．A portion of the Child Health Profile for New Madrid County is shown below．

Missouri Resident Child Health Profile								Print Profile	
AChoose Your Profile Data									
Geography：				Madrid		Demographic：	All	v	
	Submit								
County：New Madrid									
A Indicators									
	Data Years		Count	Rate	State Rate	Significantly Different	Ranking Quintile	Graphics Link	Download Data
Population Estimates									
Ages 1－4	2015	911	5.00	4.92	N／S	2	Graphics	圆 盛	
Ages 5－14	2015	2，423	13.31	12.78	N／S	2	Graphics	圂 害	
Ages 15－17	2015	753	4.14	3.94	N／S	3	Graphics	畋 荗	
Ages 18－19	2015	371	2.04	2.58	L	4	Graphics	图 大	
WIC									
WIC Participation：Ages 12 to 59 months－Inclusive	2015	449	49.29	25.21	H	1	Graphics	图	
WIC Children Ages 24 to 59 Months Obese（BMI）	2015	34	12.01	13.87	N／S	2	Graphics		
Lead Testing									
Lead Testing：Under Age 6	2016	423	30.94	19.57	H	1	Graphics	图 叁	
Blood Lead Elevations＞＝10 ug／dL：Under Age 6 Tested	2016	0	0.00	0.13			Graphics	图 呂	
Selected Indicators Under Age 18									
Under Age 18：Asthma ER Visits	2015	15	3.48 ＊	9.18	L	2	Graphics	图 爰	
Under Age 18：Asthma Hospitalizations	2015	5	11．60＊	13.25	N／S		Graphics	鱼	
Divorces Involving Children	2015	34	48.57	47.53	N／S	3	Graphics	图 無	
Probable Cause Child Abuse／Neglect	2015	37	8.59	4.52	H	4	Graphics	圁 㷼	
Selected Indicators Ages 1－14									
Ages 1－14：Self Pay／No Charge ER Visits	2015	40	4.43	6.83	L	1	Graphics	畕 羔	
Ages 1－14：Self Pay／No Charge Hospitalizations	2015	1	1.11 ＊	3.05	N／S		Graphics	图 免	
Injury ER Visits	2015	288	8，638．27	9，800．37	L	2	Graphics	图 沘	
Injury Hospitalizations	2015	5	149.97 ＊	129.20	N／S		Graphics	园 㗊	

Statistics

Several statistical measures are used to describe each indicator．These measures are located as headers along the columns in the Profiles．

Missouri Resident Child Health Profile
County：New Madrid

Data Years reflect the years of data that the corresponding row of statistics are based on． Because the Profiles draw from multiple data sources，the data years might not always be consistent throughout a Profile．For example，birth data might be updated before hospitalization data，which would be reflected in the data years．Additionally，in cases where frequencies are low，data years are often combined to produce more reliable rates．

Count is also commonly referred to as the number of events or frequency．In the indicator above （Injury ER Visits of children ages 1 through 14 years），the number of events for New Madrid County in 2015 was 288.

The Rate is the number of events（numerator）divided by the population at risk（denominator） multiplied by a constant．The rate allows comparisons to be made among different counties that have different populations．In the New Madrid County example，the count is 288，but the population at risk must still be determined．

Population at risk is＂a term applied to all those to whom an event could have happened， whether it did or not．＂${ }^{1}$ It may or may not consist of the entire population．In this example，the population at risk would be all New Madrid County residents ages 1 through 14 years．Looking at the Population Estimates section of the Profile，this population consists of 3，334 individuals （ 911 children ages 1－4 years $+2,423$ children 5－14 years）．

Missouri Resident Child Health Profile								Print Profile
County：New Madrid								
A Indicators								
	Data Years	Count	Rate	State Rate	Significantly Different	Ranking Quintile	Graphics Link	Download Data
Population Estimates								
Ages 1－4	2015	911	5.00	4.92	N／S	2	Graphics	県 盛
Ages 5－14	2015	2.423	13.31	12.78	N／S	2	Graphics	园 盛
Ages 15－17	2015	753	4.14	3.94	N／S	3	Graphics	圆 䫆
Ages 18－19	2015	371	2.04	2.58	L	4	Graphics	园 盛

The appropriate constant to use depends on the rarity of the event．The constant converts the decimal that results from dividing the frequency by the population into a more useable number． It will always be a multiple of 10 ，such as 1,000 or 100,000 ．The constant should convert the smallest rate into a number approaching or greater than 1 ．Most types of data already have a ＂standard＂constant that should be used．For example，death data（a rare event）are usually reported per 100，000 population．In the Profiles and MICAs，the constant used for each indicator will be listed in a footnote or definition．The following table provides examples of the appropriate constant to use in different situations．

[^0]| Frequency \div
 Population | Constant to
 Use | Rate | Indicator | Source |
| :--- | :--- | :--- | :--- | :--- |
| .0822 | 100 | 8.22 | Low Birth Weight
 $(<2,500$ grams $)$ | Infant Health
 Profile, State
 Rate, 2012-
 2016 |
| .00918 | 1,000 | 9.18 | Asthma ER Visits
 for Children
 Under 18 | Child Health
 Profile, State
 Rate, 2015 |
| .000607 | 10,000 | 6.07 | Neural Tube
 Defect Births | Infant Health
 Profile, State
 Rate, 2009-
 2013 |
| .0000257 | 100,000 | 2.57 | Cancer Deaths for
 Children 15-19 | Child Health
 Profile, State
 Rate, 2006-
 2016 |

The resulting rate of Injury ER Visits for New Madrid County children ages 1 through 14 years is:

Number of Events \div Population at Risk x Constant $=$ Rate
$\mathbf{2 8 8} \div \mathbf{3 , 3 3 4}=.0863827 * 100,000=8,638.27$
The State Rate is provided in the next column for comparison.
When using rates, always specify the constant in the text or in a footnote. This allows others to determine the pervasiveness of the indicator and also to ensure that they are using the same constant if comparing rates from two different sources. In the example above, the rate of Injury ER Visits by New Madrid County Children ages 1 through 14 years is $8,638.27$ per 100,000 resident children ages 1 through 14 years.

The Injury ER Visit rate is a crude rate because the exact number of events and the exact population were used. Since a specific age group was inspected, no adjustments for the county's age structure were necessary. If adjustments had been made, that information should be stated, as well. (Adjusted rates are covered in more detail on pages 30-31 of this handbook.)

When comparing two different geographies or two different time periods, rates should be used in most cases because they control for differences in population size whereas frequencies do not (in MOPHIMS the frequency column is labeled 'Count', as the terms are used interchangeably). However, frequencies cannot be completely ignored because a rate based on a small number of events may be unreliable. Unreliable rates may be encountered when analyzing data for small areas such as counties or with low frequency events such as cause-specific mortality or birth defects.

For example, suppose that in 2007, one case of influenza occurred in a community of 1,000 people. The rate of flu incidence in 2007 was $1 / 1,000$, or 0.1%. In 2008 , the population was still 1,000 people, but two persons caught the flu. The rate of flu incidence in 2008 was thus $2 / 1000$, or 0.2%. The rate of flu incidence doubled, even though the number of cases only increased by 1.

Hypothetical Example of Flu Cases in Small County, MO			
Year	Number of Events	Population	Rate* *
2007	1	1,000	1.0
2008	2	1,000	2.0
*Rate is per 1,000 population			

As this example illustrates, analysts must be very careful when drawing conclusions using rates based on small numbers. "When the numbers of cases or deaths used to compute rates are small, those rates tend to have poor reliability." ${ }^{2}$ In Profile and MICA tables, rates based on numerators of less than 20 events are usually flagged as unreliable, as shown in the example below. Profile and MICA maps are suppressed if more than half the counties have unreliable rates. If the use of data from one specified year is not required, combining multiple years of data can sometimes produce reliable rates. Similarly, data from several counties can be combined to create a reliable regional rate. At the very least, if a numerator is less than 20 , it is wise to examine the data for several years to see how the numbers or rates have fluctuated.

Title: Missouri Resident Deaths						
Data selected in addition to rows and columns below:		Cause: Influenza and pneumonia\#,				
Year:	2008	2008	2009	2009	Total for selection	Total for selection
Statistics:	Count	Rate	Count	Rate	Count	Rate
County						
St. Francois	12	16.81*	19	26.47 *	31	21.63
Missouri	1,428	21.49	1,346	19.94	2,774	20.71
Rate: Death rates are annualized per 100,000 residents and are age adjusted to the U.S. 2000 standard population.						
Source: DHSS - MOPHIMS - Death MICA						
Generated On: 8/28/2017 4:00:37 PM						
* Rate is unreliable; numerator less than 20						

[^1]Returning to the New Madrid County Injury ER Visit example, both the New Madrid County and the state Injury ER Visit rates are stable, so meaningful comparisons between the two can be made. The New Madrid County rate of $6,885.15$ is quite a bit less than the Missouri rate of $10,189.68$. However, the rates alone do not reveal if there is a statistically significant difference between New Madrid County and the state for Injury ER Visits. Instead, the Significantly Different column must be referenced.

The Significantly Different column indicates whether the difference between the county rate and the corresponding state rate is probably the result of chance factors or if the difference is meaningful. Significant difference can only be determined with the use of a statistical significance test. The result of this test is displayed on the Profile.

- "H" -95% confidence that the county rate is statistically higher than the state rate
- "L" -95% confidence that the county rate is statistically lower than the state rate
- "N/S" - cannot state with confidence that the difference between the county rate and the state rate is not due to random variations. The difference is not statistically significant and is probably not meaningful.

In this example, at 95\% confidence, New Madrid County's rate of Injury ER Visits for children ages 1 through 14 years is meaningfully lower than the Missouri rate. There is a statistically significant difference between the county rate and the state rate.

Ranking Quintiles provide a general idea of how a particular county ranks for an indicator compared to the rest of the counties in Missouri. A quintile is one-fifth of a ranked list. The 115 counties of Missouri (including St. Louis City) are ordered by rate. They are then divided into five quintiles, with 23 counties in each quintile ($115 \div 5=23$).

Quintile Ranks	
1	$1-23$
2	$24-46$
3	$47-69$
4	$70-92$
5	$93-115$

Geographies with a ranking quintile of 1 have some of the best health outcomes in the state; however, the indicator being ranked determines whether the ideal rate is the lowest rate or the highest statewide. Indicators have been identified as having positive/neutral or negative outcomes, which determines whether a low rate is ideal (e.g., Injury ER Visits) or if a higher rate corresponds to healthier community models (i.e., Lead Testing). For example, New Madrid County has a ranking quintile of 1 for Injury ER Visits by children ages 1 through 14, which indicates it is one of the top 23 counties (or said another way, New Madrid has one of the lowest rates) in Missouri for this indicator of health.

Be aware that quintiles do not indicate statistical significance or meaningful difference; they simply rank the counties. If the rates for a particular indicator are similar across the state, the rates in the highest quintile may not differ much from the rates in the lowest quintile. In cases where the numbers of events are small and rates are unreliable, a county may fall into the highest or lowest quintile on the basis of a few events, even if the underlying "true" rate is not particularly high or low. For this reason, quintiles are not shown if more than half of the counties have fewer than 20 events.

Demographic: Race Profiles are available for the state of Missouri and the following counties/cities that have large African-American populations: Boone, Buchanan, Cape Girardeau, Cass, Clay, Cole, Dunklin, Jackson, Jasper, Kansas City, Mississippi, New Madrid, Pemiscott, Platte, Pulaski, St. Charles, St. Louis County, St. Louis City, and Scott. Select the Race dropdown in the Demographic box in the Choose Your Profile Data section and click submit. (If race data are not available, this option will not appear.) To return to the overall population data, select All in the Demographic box. Don't forget to hit submit!

Graphics

The Community Data Profiles now have enhanced data visualization opportunities. Clicking on the Graphics link, available for most indicators, will take users to a separate tab showing the Community Data Profiles Dashboard. This dashboard features up to five data visualizations for the indicator specified. Using Ages 15-19: Injury ER Visits for St. Louis City, for example, will generate a dashboard showing a Significance Map, a Quintile Map, a Dashboard Graphic/Fuel Gauge, a Trend Analysis line graph, and a Comparison Bar Graph. These graphics can be modified or downloaded by clicking the Full Version button located on each graphic thumbnail.

The first available graphic, Significance Maps, use the Significantly Different calculation to map each indicator as Higher (darkest shade), Lower (lightest shade), or Not Significantly Different from the state rate. Counties where fewer than 20 events occurred are crosshatched to indicate rate unreliability, as is the case for Lewis and Worth Counties in the following map. In the Full Version, users can change the color of the maps, select a map overlay, and choose to display or hide county names, among other options. The maps can be exported or printed and the underlying data tables are available for download.

Quintile Maps offer many of the same customization opportunities as the Significance Maps. However, instead of displaying significance, these maps group counties into groups of 23 based on their quintile ranking.

A Dashboard Graphic, or fuel gauge, is also available on the Dashboard Results. This graphic imparts a lot of information quickly and easily. Users can see how a rate ranks compared to the state and in which ranking quintile it falls. The legend also displays exactly where it ranks (compared to others in the chosen geography type). In this example, the Full Version shows St. Louis City has an Injury ER rate for ages 15-19 that ranks $50^{\text {th }}$ for the state (out of 115 counties), which is significantly worse than the state rate.

By clicking Full Version on the Comparison Bar Graph users can chart the rates of a single indicator for several counties or several indicators for a single county. Users simply click on the drop down list at the bottom of the Choose Your Comparison Bar Graph Data section to select additional counties/indicators. This functionality is also available in the Trend Line Analysis line graph.

We can now see that St. Louis City Injury ER Visit rate is higher for the 1-14 age group than the 15-19 age group. Though the age group pattern is flipped for hospitalizations, it is also very clear that ER Visit rates are much higher than Injury Hospitalization rates-more children are discharged from emergency rooms than from the hospital.

AComparison Bar Graph Data								
Profile: Missouri Resident Child Health Profile Chart Type: Comparison Bar Graph Geography: St. Louis City County, Demographic: All, Indicators: Selected Indicators Ages 1-14-Injury ER Visits, Selected Indicators Ages 1-14-Injury Hospitalizations, Selected Indicators Ages 15-19-Injury ER Visits, Selected Indicators Ages 15-19-Injury Hospitalizations								
Indicator Name	Data Year	Count	Rate	Significantly Different	Ranking Quintile	State Rate	Lower 95\% Confidence Limit	Upper 95\% Confidence Limit
Selected Indicators Ages 1-14-Injury ER Visits	2015	6,307	12,676.88	H	4	9,800.37	12364.01	12989.75
Selected Indicators Ages 1-14-Injury Hospitalizations	2015	88	176.88	H		129.20	141.86	217.92
Selected Indicators Ages 15-19-Injury ER Visits	2015	2,083	12,356.15	H	3	11,051.56	11825.52	12886.78
Selected Indicators Ages 15-19-Injury Hospitalizations	2015	125	741.49	H		419.63	617.21	883.45
Rates are considered unreliable when based on less than 20 Source: DHSS-MOPHIMS Community Data Pr Generated On: 08/15/2018 09:27:53 AM	iles - Child	ponding	nts before	g the rates sho				
Download Chart Data								

Users will notice that not all indicators from the Child Health Profile can be compared to one another in the Comparison Bar Charts or the Trend Line Analysis. This is because, as noted on page 16, many of the indicators use different constants in the rate calculations. It would be inappropriate to show these indicators together on a single graph without converting all of the statistics to the same rate constant.

The Full Version also shows the underlying data table for each graphic, as well as additional information like confidence limits, where applicable, for some of the graphics. This data table is also available for download, allowing users to further customize graphics or conduct additional analyses.

Other additional features are available in the Full Version graphics. For example, on the Trend Line Analysis line graph, background statistics compare three-year moving averages to determine whether an indicator has seen significant increases or decreases over time.

Trend lines graphically show the rate of occurrence of a disease or risk factor over time. They also illustrate the direction and acceleration of changes in that rate. In general, indicators which have trend lines with steep upward slopes may be considered more urgent than those with trend lines which are also increasing but have more gradual slopes.
As with rates themselves, there can be random variation in the trend lines of rates, so that a line that slopes upward may not represent a statistically significant increase, particularly if it is based on small numbers. For that reason, significance tests are run to determine whether or not, with at least 95% confidence, what appears to be an increase or decrease is meaningful and not just the result of random fluctuation. The results of these significance tests are explained in the Trend Analysis, which appears below the trend line chart.

Three-Year Moving Averages are used to calculate the trend lines in order to smooth any random variation that may occur within a particular year. When a new year of data becomes available, the oldest year from the prior three-year period is dropped, and the new year is added. For example, the earliest year of injury data included in this Child Health Profile example is 2004. The first three-year moving average was calculated using 2004, 2005, and 2006. When the 2006 data became available, 2003 was dropped and 2006 was added to calculate the next three-year moving average. Trends are available only if each three-year period has an average of 20 or more events. In other words, trend lines are only available for stable rates. These three-year moving averages are listed in a table below the Trend Analysis.

In the trend line chart below, the crude rate of Injury ER Visits for ages 15-19 for St. Louis City residents declined somewhat in earlier years (from 14,376.90 per 100,000 residents in 2004-2006 to $12,929.27$ in 2008-2010) before rising in 2011-2013 to 13,018.48 and falling again in subsequent years. The Trend Analysis reveals that the changes across the entire trend line are statistically significant. In other words, Injury ER Visits in St. Louis City for this specific age group has significantly decreased since 2004 , in spite of a few periods of increase.

To download the Trend Line Analysis graph, click the green Save Chart As button, shown above. Three download options are available: PDF, JPEG, and PNG. Any of these will allow the entire image to be saved and placed in a document without further manipulation. This feature is available for each of the data visualization options on the Profiles Dashboard.

To download the three-year moving averages table into Microsoft Excel, simply click the green Download Chart Data button at the bottom of the screen.

Be sure that pop up blockers are disabled. An Excel file will appear at the bottom of the browser. An example is circled in orange above.

Clicking this file will immediately open the table in an Excel workbook. Please note that the trend line chart does not download into Excel, only the data table. Once the data are downloaded, Excel's Line Chart tools can be used to recreate and customize the trend line.

Profiles Exercises - Part I

1. You have been asked to compile some basic information about the incidence (new cases) of birth defects in Cass County and Jasper County.
a. Which Profile contains data on birth defects?
b. What is the population constant for birth defects?
c. List two sources of birth defects data.
d. What is the birth defects rate for Cass County? For
Jasper County?
e. Is Cass County's rate significantly different from the state rate? \qquad If yes, how?
Is Jasper County's rate significantly different from the state rate? \qquad
If yes, how?
f. What is the neural tube defect rate for Cass County? \qquad
For Jasper County? Are these rates significantly different from the state rate, and, if yes, how? \qquad

Age-Adjusted Rates

The Child Health Profile contains only crude rates because it focuses on a specific age group, children aged 0-19 years. In many situations, however, analysts are required to compare total populations and different geographic areas that may have wildly different age compositions that could affect such comparisons. For example, consider the age pyramids of Pulaski and Camden Counties shown below. Pulaski County includes many young adults, while Camden County is home to many older adults. When comparing total populations for different areas or even for different time periods within the same area, age-adjusted rates should be used instead of crude rates.

Source: MODHSS, Adapted from Population MICA
An age-adjusted rate "removes differences in the age composition of two or more populations to allow comparisons between these populations independent of their age structure. ${ }^{3}$ Stated another way, age-adjusting allows users to make fairer comparisons between populations with different age structures. Age is the variable most commonly adjusted because the onset of many health conditions is strongly correlated with age. After age adjusting, we can "be sure that any difference [is] not due to a difference in the age distributions. . . We could also adjust for differences in sex, race and economics if we wanted to exclude those effects." ${ }^{4}$

[^2]A standard population distribution is used to adjust rates. The age-adjusted rates are the rates that would have existed if the population under study had been distributed in the same way as the 'standard' population. Notice the difference between the crude and the age-adjusted rates for Pulaski and Camden Counties.

2008 Death Rates per 100,000 Population

Pulaski Crude Rate $=\mathbf{6 1 2 . 8}$
Pulaski Age-Adjusted Rate* = 1,029.2
*Adjusted to the US 2000 standard population

Camden Crude Rate $=1,003.2$
Camden Age-Adjusted Rate* $=791.6$

The following example illustrates the process of age adjusting rates. Community B has a higher death rate for each age category than Community A, but Community A's overall crude death rate is higher. However, after the rates are age-adjusted, Community B has the higher overall death rate, which better reflects the true risk of death in Community B.

Crude Death Rates

	Community A				Community B		
Age	Deaths	Population	Rate per 1,000		Deaths	Population	Rate per 1,000
$0-34$	20	1,000	20	180	6,000	30	
$35-64$	120	3,000	40	150	3,000	50	
$65+$	360	6,000	60		70	1,000	70
Total	500	10,000	50		400	10,000	40

Age-Adjusted Death Rates

Age	Standard Population	Community A		Community B	
		Crude Rate	Rate * Population	Crude Rate	Rate * Population
0-34	3000	20	60,000	30	90,000
35-64	3000	40	120,000	50	150,000
65+	4000	60	240,000	70	280,000
Total	10000		420,000		520,000
Age- Adjusted Rate per 1,000			42		52

Source: Curtin \& Klein, 1995
NOTE: The same standard population must be used on both sides of the comparison. It is not legitimate to compare adjusted rates which use different standard populations.

The US 2000 standard population is currently used by all federal agencies and should be selected in most situations. If comparing to older reports, the 1940 or 1970 standard populations may be used. MICA allows for age adjusting based on all three of these standard populations. The standard population must be cited with the rate, either in the text or in a footnote, as in this example from the Community Data Profiles.

[^3]
Survey Data

Most of the data in the Profiles and MICAs are based on counts of actual events. These counts are taken from surveillance systems or registries that attempt to record each relevant incident, such as births in the birth certificate system or new cases of cancer in the Cancer Registry. However, for many conditions and risk factors there are no specific registries; therefore, there are no complete counts. For example, no registry records every person diagnosed with asthma. Asthma sufferers who die from the condition are captured in the death certificate system but relatively few people die from asthma. The Patient Abstract System captures hospital and emergency room visits for asthma but not every asthma sufferer requires hospital treatment. Many are treated by general practitioners or in urgent care centers. Likewise, there are no registries for most risk factors, such as smoking or high blood pressure. For conditions and risk factors such as these, surveillance systems based on survey data have been established.

Behavioral Risk Factor Surveillance System (BRFSS)

The Behavioral Risk Factor Surveillance System (BRFSS) is a state-based surveillance system conducted in all 50 states, the District of Columbia, and several US territories in collaboration with the U.S. Centers for Disease Control and Prevention (CDC). Interviews are conducted annually with adults ages 18 and older through randomly selected landline and cell phone telephone numbers. The purpose is to collect data on chronic diseases, conditions, risk factors, preventive health practices and other health-related topics. Most of the interview questions remain the same from year to year, but some questions are only asked every other year. Questions may be added as new trends emerge, and states have the opportunity to select optional modules in addition to the core questions asked in all states. A list of BRFSS topics is available in the Appendix. The CDC and some states recently piloted the use of mail and web surveys for telephone non-respondents to study the impact on response rates. At this time, there is no plan to add the modalities to the BRFSS.

In the BRFSS, a proportion of adults age 18 or older are randomly selected to participate in the survey and the data are weighted to be representative of all adults in the entire population. Demographic dimensions used in the weighting method to produce state prevalence estimates are as follows:

- age group by gender
- detailed race/ethnicity
- educational level
- marital status
- home owner or renter status
- gender by race/ethnicity
- age group by race/ethnicity
- telephone source (landline telephone only, both landline and cell phone, or cell phone only)

For states that collect and report data according to regions, such as Missouri's seven BRFSS regions shown below, the weighting procedure includes these additional dimensions:

- region
- region by age group
- region by gender
- region by race/ethnicity

Because of a difference in weighting methodologies, prior years of BRFSS data may not be compared to 2011 data.

Currently in Missouri, approximately 4,200 landline and 3,000 cell phone interviews are conducted annually. Prevalence estimates are available for the state overall and the seven regions shown below.

BRFSS Regions

Key:

Northwest Region
Northeast Region
Kansas City Metro Reg
Central Region
St. Louis Metro Region
Southwest Region
Southeast Region

Several BRFSS indicators are included in the Diabetes, Heart Disease, and Stroke Profiles. All Missouri BRFSS data can be accessed directly from http://www.health.mo.gov/data/brfss/index.php or through the Data, Surveillance Systems \& Statistical Reports website. BRFSS data from all states may be obtained from the Centers for Disease Control and Prevention website at http://www.cdc.gov/brfss/.

BRFSS is a valuable public health surveillance system at both the national and state levels. It provides upstream indicators - prevalence of risk behaviors, chronic conditions, and diseases which are crucial to public health program planning and progress monitoring. There are some limitations to the BRFSS-type survey, including the ability of respondents to recall information
accurately and lack of representation of individuals not included in the sampled population, such as those institutionalized. Regardless of these limitations, the value of BRFSS is unquestionable because of its timeliness, its coverage, and its upstream indicators that would not be available without BRFSS.

Missouri County Level Study

The Missouri County Level Study (CLS) is a special BRFSS-like survey that has been conducted four times - in 2003, 2007, and 2011, and 2016. The study purpose is to produce county-specific prevalence estimates of chronic diseases, conditions, risk factors and preventive practices of Missouri adults ages 18 and older. Telephone interviews were conducted with approximately 15,000 adults in 2003, 52,000 in 2011, and 50,500 in 2016. The 2011 survey included 4,880 interviews with cell phone only users which increased to 25,000 cell phone only households in 2016. The 2007, 2011, and 2016 studies were funded by the Missouri Foundation for Health.

The 2011 CLS data are available through the Community Data Profiles website at https://webapp01.dhss.mo.gov/MOPHIMS/ProfileBuilder?pc=14. Because the 2011 CLS combined landline and cell phone data were weighted using CDC's new BRFSS methodology, 2011 data may not be compared to 2003 or 2007 data unless the older data are re-weighted.

NOTE: The 2003 CLS data have been removed from the DHSS website. The 2007 CLS data were re-weighted and are now available through the 2007-2011 County Level Study Comparison Profiles. Eventually, a similar option to compare the 2016 CLS results will be added.

Additional information about the CLS can be accessed at http://www.health.mo.gov/data/cls/index.php or through the Data, Surveillance Systems \& Statistical Reports website.

Missouri County Level Study Profile

Two Profiles (the County Level Study Profile and the County Level Study Comparison Profile) were designed specifically to present CLS data. Each of these Profiles are divided into sections based on relevant survey questions. Data from questions on access to care, health behaviors, health conditions, screening, health policy and environment, and health literacy may be found at the top of the County Level Study Profile. The County Level Study Comparison Profile has a slightly different format, but is very similar to the County Level Study Profile. A portion of the 2016 County Level Study Profile follows. The exact survey questions and potential responses may be viewed by selecting the hyperlinked indicator labels.

The CLS Profiles are set up somewhat differently than most of the other Community Data Profiles. The CLS data are estimates based on survey responses, not complete counts of actual events. The Number of Respondents for each indicator shown on the CLS Profiles is the number of people asked a question about that indicator, NOT the total number of residents affected by that indicator. For example, 30,295 adults were asked if they had health care coverage. Based on their responses, it is estimated that 13.81% of adult Missouri residents did not have health care coverage in 2016. This 13.81% is a Prevalence rate. For the CLS, data were weighted to be representative of the adult (18 years of age and older), non-institutionalized population of the area covered. Age-Adjusted Prevalence rates are available in the Rate Type dropdown in the Choose Your Profile Data section of the screen and allow for fairer comparisons to be made between different geographies that may have different age structures.

Age－adjusted rates are discussed in more detail in an earlier section of this handbook．Download features include the ability to download state，regional，county，and city data for an indicator to an Excel table，PDF document，or a map．The Demographic dropdown at the top of the table segment allows users to parse the indicators by demographic characteristics．Available demographics include：Race，Gender，Age，Income，Rural－Urban，Education Status，and Health Insurance Status．

Below is the County Level Study Profile for Adair County．A portion of the Adair County Profile is shown below．On each county level Profile，the prevalence rate for each indicator is compared to the region and state prevalence rates to determine if there are statistically significant differences．Notice that only one Demographic choice is available，Demographic：All．Due to the survey design，the data could not be stratified for most counties．Available Demographic choices will vary depending on the geography selected．

	MICA v EPHT	Q Search			2 Sign Up			－JLogin		
Missouri Resident County－Level Study Profile							Print Profile			
AChoose Your Profile Data										
CLS Year： 2016	Rate Type：W		Weighted Percent v	－	Demographic：A		All			
Geography：COUNTY＊	County：A		－	\checkmark			v			
Submit										
County：Adair										
AHealth，Risk Factors，and Preventive Practices Indicators										
	All									
Indicator	Number of Respondents	Prevalence （\％）	95% Cl Lower	95\％CI Upper			Regional Significance	State Significance	Graphics Link	Download Data
General Health										
Fair or Poor General Health Status	375	19.41	13.77	25.06	NS	NS		Graphics	圂 㗊	
Activity limitation	366	20.78	15.07	26.49	NS	NS	Graphics	图僉		
Access to Care										
No health care coverage－Ages 18－64	231	15.22	8.80	21.63	NS	NS	Graphics	图 恕		
Did not get medical care because of cost or no insurance－ Among those who needed medical care but could not get it in the past 12 months	59	48.03	29.58	66.48	NS	NS	Graphics	园 成		
Last had a routine physical checkup more than 2 years ago	344	20.58	13.89	27.27	NS	NS	Graphics	畋 㕲		
No dental care coverage	351	57.80	50.25	65.36	NS	NS	Graphics	园 学		
Needed to see a dentist in past 12 months but could not due to cost	358	15.36	10.02	20.69	NS	NS	Graphics	园 哭		
Last visited a dentist more than 2 years ago	354	23.84	17.67	30.01	NS	NS	Graphics	园 峃		
Indicator constants and denominators for this Profile can be found here ＊Percents are not provided for indicators with less than 50 respondents．										
\boldsymbol{A} Downloads										
Download Profile										

Missouri County Level Study Comparison Profile

The County Level Study Comparison Profile compares results from the 2007 and 2011 studies．For these Profiles，the 2007 data have been re－weighted using the CDC＇s new BRFSS methodology for combined landline and cell phone data．As a result，the numbers currently presented in the Comparison Profile may not match the numbers previously displayed on the 2007 County－Level Study Profile，which have been removed from the DHSS website．A portion of the County Level Study Comparison Profile for Bates County follows．

Missouri Resident County－Level Study Comparisons Profile							Print Profile
AChoose Your Profile Data							
Comparison Year：2007－2011 v	Rate Typ	Weight	Percent v				
Geography：COUNTY＊	Cou	Bates	－		Demographic：	All	－
Submit							
A Health and Preventive Practices Indicators							
	$\begin{aligned} & 2007 \text { Number } \\ & \text { of } \\ & \text { Respondents } \end{aligned}$	2007 Prevalence （\％）	$\begin{aligned} & 2011 \text { Number } \\ & \text { of } \\ & \text { Respondents } \end{aligned}$	2011 Prevalence （\％）	Prevalence Different 2007－ 2011 （\％）	Significant Change 2007－ 2011 H／L／NS	Download Data
Fair or Poor General Health Status	380	27.07	395	29.97	2.90	NS	圆 珨
Activity Limitation	380	30.68	396	29.99	－0．69	NS	廌
No health care coverage Ages－18－64	253	22.37	225	22.68	0.32	NS	図 合
Could not get needed Medical care in past 12 months	380	7.51	395	5.14	－2．38	NS	畕
Did not get medical care because of cost or no insurance－among those who needed medical care but could not get it in the past 12 months	0	＊	0	＊	＊	＊	圆
Did not get medical care because of lack of transportation－among those who needed medical care but could not get it in the past 12 months	0	＊	0	＊	＊	＊	圂
Did not get medical care because of other reasons－among those who needed medical care but could not get it in the past 12 months	0	＊	0	＊	＊	＊	园
Current cigarette smoking	378	28.89	394	18.62	－10．27	L	圆会
No leisure time physical activity	379	31.94	397	26.70	－5．24	NS	园 荗
Ate fruits and vegetables less than 5 times per day	359	78.29	396	91.93	13.64	H	园
Overweight（25．0－29．9 BMI）	368	33.38	371	33.22	－0．16	NS	圆 㚱
Obese（＞＝ 30 BMI ）	368	32.39	371	29.78	－2．61	NS	园
Ever told had high blood pressure（Among those that had ever blood pressure checked）	375	22.50	392	43.97	21.46	H	圆 合
Ever had blood cholesterol checked－among age 35 and older	322	86.28	354	88.55	2.28	NS	圆 A
Current asthma	380	7.38	395	8.75	1.36	NS	园

Indicator constants and denominators for this Profile can be found here
－Percents are not provided for indicators with less than 50 respondents．
The Comparison Profile provides the number of people asked each question and the weighted percent of the population（or prevalence）for each year．The Prevalence Difference 2007－2011 （\％）column shows the change over time．The Significant Change 2007 to 2011 H／L／NS column indicates whether any statistically significant change occurred between the two data years．For example，the Ate fruits and vegetables less than 5 times a day rate for Bates County increased significantly between 2007 and 2011.

Stroke Profile

Several CLS indicators are included in the Diabetes，Heart Disease，and Stroke Profiles，which are part of the Chronic Disease section of the Community Data Profiles．As an example，Stroke Profile contains information on risk factors，prevalence，mortality，hospitalizations，ER visits， and hospital utilization indicators for stroke．

The following examples explore the Stroke Profile for Pettis County．
The first section of the Stroke Profile contains data about the risk factors for stroke and stroke prevalence．These data were collected from the Behavioral Risk Factor Surveillance System （BRFSS）and the 2011 County Level Study surveys．Additional information about these surveys can be found in an earlier section of this handbook．

Missouri Resident Stroke Profile								Print Profile
AChoose Your Profile Data								
Geography：	－		County：	Pettis v		ographic：	All	v
	Submit							
County：Pettis								
ARisk factors and prevalence rates for stroke among adults 18 years and older								
	Data Years	Population Estimate	Weighted Percent	State Weighted Percent	Significantly Different	Ranking Quintile	Graphics Link	Download Data
Risk factors for stroke								
BRFSS †（ Central）								
Angina or coronary heart disease	2015	34，273	6.10	4.80	N／S		Graphics	県
Prior heart attack	2015	26，479	4.70	5.30	N／S		Graphics	県
No cholesterol screening	2015	401，448	73.60	80.30	L		Graphics	県爰
Binge drinking	2015	103，838	19.40	16.70	N／S		Graphics	畕 爰
Heavy drinking	2015	41，029	7.60	6.20	N／S		Graphics	鱼
Heavy drinking among males	2014	19，553	7.80	6.80	N／S		Graphics	图 㚾
Heavy drinking among females	2014	5，756	2.30	3.70	N／S		Graphics	园 学
Incorrectly answered signs and symptoms of stroke	2009	377，609	79.80	78.90	N／S		Graphics	园 学
County Level Study \ddagger								
High blood pressure	2011	9，934	35.30	34.40	N／S	2	Graphics	県
High cholesterol	2011	9，777	34.80	39.60	N／S	1	Graphics	园
Diabetes	2011	3，172	11.30	10.70	N／S	3	Graphics	県 哭
Obesity	2011	8，521	30.30	30.10	N／S	2	Graphics	畕夻
Overweight	2011	8，859	31.50	34.50	N／S	2	Graphics	畕 㗊
Current smoking	2011	6，486	23.10	23.10	N／S	3	Graphics	图 学
Physical inactivity	2011	7，485	26.60	23.70	N／S	3	Graphics	鱼
Low fruit and vegetable intake	2011	24，957	88.80	87.50	N／S	3	Graphics	圆
Stroke prevalence（non－institutional）＊＊＊								
BRFSS †（ Central）								
Adults age 18 and older	2015	12，870	2.30	4.50	L			
Indicator constants and denominators for this Profile can be found here \ddagger County Level Study is a large sample survey that provides Missouri county－specific rates． \dagger Behavioral Risk Factor Surveillance System（BRFSS）annual survey provides state and regional rates．Note that for county profiles，rates are provided at the regional level． ＊＂Prevalence estimates for stroke are likely to be underestimated because they are based on a telephone survey of residences．Some persons who have had strokes may be unable to respond to a telephone survey；many reside in nursing homes or other institutions．								

The presentation of survey data in most of the Profiles differs from that used in the CLS Profiles． In the CLS Profiles，the Number of Respondents column represented the number of adults asked each question．However，in most Profiles，the number listed is a Population Estimate．

For example，the BRFSS estimates that the Central Region has 26，479 adult residents who have experienced a prior heart attack，while the CLS estimates that 6，486 adult residents of Pettis County currently smoke．

Remember that CLS rates are county specific，but BRFSS rates represent regions of the state，not individual counties．BRFSS data are not statistically stable below the regional level，so regional data are provided even for county level Profiles．The appropriate region will be identified next to the BRFSS heading．For example，Pettis County is part of the Central Region．All of the counties in the Central Region will have the same rates listed for the BRFSS indicators．To view the counties included in a region，click on the region label．

Missouri Resident Stroke Profile								Print Profile
AChoose Your Profile Data								
Geography：COUNTY	－		County：	－ttis		ographic：	All	－
Submit								
County：Pettis								
ARisk factors and prevalence rates for stroke among adults 18 years and older								
	Data Years	Population Estimate	Weighted Percent	State Weighted Percent	Significantly Different	Ranking Quintile	Graphics Link	Download Data
Risk factors for ctroke BRF $\operatorname{sS} \dagger$（ Central ）								
Angina or coronary heart disease	2015	34，273	6.10	4.80	N／S		Graphics	図态
Prior heart attack	2015	26，479	4.70	5.30	N／S		Graphics	鱼

The second section of the Stroke Profile，Mortality／PAS（Hospitalization and ER Indicators）is organized in the same way as the Child Health Profile．However，the rates used in this section are age－adjusted because the entire population is included．

AMortality／PAS（Hospitalization and ER indicators）								
	Data Years	Count	Rate	State Rate	Significantly Different	Ranking Quintile	Graphics Link	Download Data
Mortality								
Stroke／other cerebrovascular disease	2006－2016	277	47.33	43.85	N／S	4	Graphics	図 峃
Hospitalizations								
Stroke／other cerebrovascular disease （CVD）	2011－2015	758	30.07	27.85	N／S	4	Graphics	图
Acute stroke	2011－2015	618	24.56	21.75	H	5	Graphics	园 尞
Ischemic stroke	2011－2015	536	21.28	18.27	H	5	Graphics	圂 学
Hemorrhagic stroke	2011－2015	82	3.28	3.48	N／S	4	Graphics	図 尞
Late effects and other CVD	2011－2015	46	1.86	1.70	N／S		Graphics	圂 学
Transient ischemic attack（TIA）	2011－2015	94	3.64	4.40	N／S	3	Graphics	図 告
Emergency room visits								
Stroke／other cerebrovascular disease	2011－2015	306	1.25	0.77	H	4	Graphics	図 尞
Transient ischemic attack（TIA）	2011－2015	141	0.58	0.31	H	4	Graphics	资 覄
Indicator constants and denominators for this Profile can be found here Mortality rates are per year per 100,000 population and are age－adjusted to the U．S． 2000 standard population． Hospitalization rates are per year per 10,000 population and are age－adjusted to the U．S． 2000 standard population． Emergency room rates are per year per 1,000 population and are age－adjusted to the U．S． 2000 standard population． Trends are available only if each 3 －year period of the moving average has an average of 20 or more events．								

The third section of the Stroke Profile contains Hospital Utilization data．These data show the total charges and total days of care for the different types of strokes，as well as other data specific to particular types of strokes．

	Data Years	Count	Percent	State Percent	Graphics Link	Download Data
Hospital Utilization Indicators						
Stroke／other cerebrovascular disease						
Total charges	2015	6，646，485	－	－		図 尞
Age 65 and older	2015	3，872，264	－	－		図
Total days of care	2015	760	－	－		図 㶳
Age 65 and older	2015	507	－	－		図
Ischemic stroke						
Total charges	2015	3，563，486	－	－		圂 無
Total days of care	2015	397	－	－		圂
Discharge status＠						
Home	2011－2015	283	52.80	56.22		圆 尞
Other LTC facility	2011－2015	139	25.93	14.90		圂
Rehabilitation	2011－2015	64	11.94	18.19		図
Died	2011－2015	21	3.92	3.65		圂
Thrombolytic agent（tPA）given	2011－2015	18	3.36 ＊	6.44		図 点
Hemorrhagic stroke						
Total charges	2015	2，052，245	－	－		図 妾
Total days of care	2015	175	－	－		図 燅
Discharge status＠						
Home	2011－2015	24	29.27	31.73		圂 尞
Other LTC facility	2011－2015	19	23.17 ＊	17.18		図 覀
Rehabilitation	2011－2015	9	10．98＊	19.83		圂 替
Died	2011－2015	22	26.83	21.56		圂 㛃
TIA hospitalizations admitted through ER	2011－2015	11	11．70＊	76.77		図爰
Indicator constants and denominators for this Profile can be found here ＊Fewer than 20 events in numerator；rate is unreliable． Percentages for discharge status will not add to 100% because of transfers，unknown and other discharge dispositions．						

As with the Child Health Profile，the entire Stroke Profile can be downloaded using the link at the bottom of the screen．Individual indicators for all geographies are also downloadable from the Download Data column．

```
ADownloads
Download Profile
```

Data by Race are also available for counties／cities with large African－American populations．

Profiles Exercises - Part II

2. You decide to graph the birth defects data you gathered in the exercise on page 29. Create a trend line graph to see how Neural Tube Defect (NTD) rates have changed over time in Cass County. Were you able to generate a trend line graph? \qquad Why or why not?
3. You are writing a report on mothers in Texas County. You are interested in comparing births by age of mothers $15-17$ for the years 2013 through 2017 for Texas County and its neighbors, Shannon and Howell Counties.
a. Which Profile did you use?
b. Which of these counties have rates that are statistically significantly lower than the state rate?
c. Which of these counties have rates that are not statistically significantly different from the state rate?
d. Which of these counties have rates that are statistically significantly higher than the state rate?
e. Do any of the counties have unstable rates
f. Into which ranking quintile does Texas County fall? \qquad What does this tell us about Texas County's rate compared to the rates of the other 114 counties in Missouri?
4. A coalition in your county is interested in working on decreasing tobacco use among adults. You have been asked to begin compiling information to educate the coalition on this topic and how they should focus their time and resources. Use the 2016 County-Level Study Profiles to obtain the answers to the following questions:
a. What is the prevalence of current cigarette smoking among adults in your county?
b. Is there a significant difference when comparing the age-adjusted prevalence of current cigarette smoking in your county to the region? To the state?
c. In what quintile ranking does current cigarette smoking in your county fall? Where did you find this information?
d. What related data from the 2016 County-Level Study might you want to consider regarding local tobacco use problems?

[^0]: ${ }^{1}$ Austin DF，Werner SB．Epidemiology for the health sciences：A primer on epidemiologic concepts and their uses． Springfield，IL：Charles C．Thomas； 1974.

[^1]: ${ }^{2}$ CDC "Suppression for Reliability" Suppression of Rates and Counts
 https://www.cdc.gov/cancer/npcr/uscs/technical_notes/stat_methods/suppression.htm. June 30, 2017

[^2]: ${ }^{3}$ Florida Department of Health. FloridaCHARTS user's guide: Empowering communities with health information. Florida CHARTS. http://www.flhealthcharts.com/Charts/documents/CHARTS_USER_GUIDE_8_2012.pdf Accessed April 10, 2014.
 ${ }^{4}$ Austin DF, Werner SB. Epidemiology for the health sciences: A primer on epidemiologic concepts and their uses. Springfield, IL: Charles C. Thomas; 1974.

[^3]: Mortality rates are per year per 100,000 population and are age-adjusted to the U.S. 2000 standard population.

